Spatio-temporal Responses of Arabidopsis Leaves in Photosynthetic Performance and Metabolite Contents to Burkholderia phytofirmans PsJN
نویسندگان
چکیده
A valuable strategy to improve crop yield consists in the use of plant growth-promoting rhizobacteria (PGPRs). However, the influence of PGPR colonization on plant physiology is largely unknown. PGPR Burkholderia phytofirmans strain PsJN (Bp PsJN) colonized only Arabidopsis thaliana roots after seed or soil inoculation. Foliar bacteria were detected only after leaf infiltration. Since, different bacterial times of presence and/or locations in host plant could lead to different plant physiological responses, photosynthesis, and metabolite profiles in A. thaliana leaves were thus investigated following leaf, root, or seed inoculation with Bp PsJN. Only Bp PsJN leaf colonization transiently decreased cyclic electron transport and effective quantum yield of photosystem I (PSI), and prevented a decrease in net photosynthesis and stomatal opening compared to the corresponding control. Metabolomic analysis revealed that soluble sugars, amino acids or their derivatives accumulated differently in all Bp PsJN-inoculated plants. Octanoic acid accumulated only in case of inoculated plants. Modifications in vitamin, organic acid such as tricarboxylic acid intermediates, and hormone amounts were dependent on bacterial time of presence and location. Additionally, a larger array of amino acids and hormones (auxin, cytokinin, abscisic acid) were modified by seed inoculation with Bp PsJN. Our work thereby provides evidence that relative short-term inoculation with Bp PsJN altered physiological status of A. thaliana leaves, whereas long-term bacterization triggered modifications on a larger set of metabolites. Our data highlighted the changes displayed during this plant-microbe interaction to trigger physiological and metabolic responses that could explain the increase in plant growth or stress tolerance conferred by the presence of Bp PsJN.
منابع مشابه
Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization
Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including...
متن کاملBurkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana
Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis pa...
متن کاملA Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN
Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are...
متن کاملBurkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obt...
متن کاملBurkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction
It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in plant science
دوره 7 شماره
صفحات -
تاریخ انتشار 2016